Newsletters & Reports

  Newsletter December 2020: https://tinyurl.com/1wx2o36t

  Newsletter February 2021: http://tinyurl.com/2v797qqw

  Report of 1st Meetings of Working Groups: https://tinyurl.com/3tjda7d2

Webinars

Wadoux, A. 2021: “Estimating soil properties with spectral data”, https://doi.org/10.5446/52954

Ramirez-Lopez, L. 2021: “Getting accurate predictions from large and diverse spectral libraries”, https://doi.org/10.5446/52955

Project publications and presentations

Sanderman, J., Savage, K., Dangal, S.R.S., Duran, G., et al. (2021) Can agricultural management induced changes in soil organic carbon be detected using mid-infrared Spectroscopy? Remote Sensing, 13, 2265. 10.3390/rs13122265

Gholizadeh, A., Neumann, C., Chabrillat, S., van Wesemael, B., et al. (2021). Soil organic carbon estimation using VNIR-SWIR spectroscopy: The effect of multiple sensors and scanning condition. Soil and Tillage Research, 211, 105017. 10.1016/j.still.2021.105017

Pittaki-Chrysodonta, Z., Hartemink, A., Sanderman, J., Ge, Y., Huang, J. (2021). Evaluation three calibration transfer methods for predictions of soil properties using mid-infrared spectroscopy. Soil Science Society of America Journal.  10.1002/saj2.20225

Dangal, S.R.S., Sanderman, J. (2020). Is standardization necessary for sharing a large mid-infrared soil spectral library? Sensors, 20, 6729. 10.3390/s20236729

Sanderman, J., Todd-Brown, K.E., Hengl, T., Dangal, S.R.S., et al. (2020). Spectroscopy to fill the soil data gap. ASA-CSSA-SSSA International Annual Meeting. November 2020. https://scisoc.confex.com/scisoc/2020am/prelim.cgi.Paper.131585

Sanderman, J., Dangal, S.R.S., Todd-Brown, K.E., Hengl, T., et al. (2020). Filling the soil data gap. American Geophysical Union Fall Meeting. December 2020. http://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/713137

Important literature

Dematte, J.A.M., Dotto, A.C., Paiva, A.F.S., Sato, M.V., et al. (2019). The Brazilian soil spectral library (BSSL): A general view, application and challenges. Geoderma, 354, 113793. 10.1016/j.geoderma.2019.05.043

Matamala, R., Jastrow, J.D., Calderon, F.J., Liang, C., et al. (2019). Predictiong the decomposability of arctic tundra soil organic matter with mid infrared spectroscopy. Soil Biology and Biochemistry, 129, 1–12. 10.1016/j.soilbio.2018.10.014

Wijewardane, N.K., Ge, Y., Wills, S., Libohova, Z. (2018). Predictiong physical and chemical properties of US soils with a mid-infrared reflectance spectral library. Soil Science Society of America Journal, 82, 722–731. 10.2136/sssaj2017.10.0361

Viscarra Rossel, R.A., Behrens, T., Ben-Dor, E., Brown, D.J., et al. (2016). A global spectral library to characterize the world’s soil. Earth-Science Reviews, 155, 198–230. 10.1016/j.earscirev.2016.01.012

Ben-Dor, E., Ong, C., Lau, I.C. (2015). Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma, 245–246, 112–124. 10.1016/j.geoderma.2015.01.002

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., et al. (2015). Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Advances in Agronomy, 132, 139–159. 0.1016/bs.agron.2015.02.002

Baldock, J.A., Hawke, B., Sanderman, J., Macdonald, L.M. (2013). Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra. Soil Research, 51, 577–595. 10.1071/SR13077

Gholizadeh, A., Boruvka, L., Saberioon, M.M., Vasat, R. (2013). Visible, near-infrared and mid-infrared spectroscopy application for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues. Applied Spectroscopy, 67, 1349–1362. 10.1366/13-07288

Toth, G., Jones, A., Montanarella, L. (2013). The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environmental Monitoring and Assessment, 185, 7409–7425.  10.1007/s10661-013-3109-3

Terhoeven-Urselmans, T., Vagen, T., Spaargaren, O., Shepherd, K.D. (2010). Prediction of soil fertility from a globally distributed soil mid-infrared spectral library. Soil Science Society of America Journal, 74, 1792–1799. 10.2136/sssaj2009.0218

Viscarra Rossel, R.A., Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158, 46–54. 10.1016/j.geoderma.2009.12.025

Viscarra Rossel, R.A., Walvoort, D.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O. (2006). Visible, near infrared, mid infrared or combined difuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131, 59–75. 10.1016/j.geoderma.2005.03.007
 
McCarty, G.W., Reeves, J.B., Reeves, V.B., Follette, R.F., Kimble, J.M. (2002). Mid-infraraed and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Science Society of America Journal, 66, 640–646. 10.2136/sssaj2002.6400a
 
Shepherd, K.D., Walsh, M.D. (2002). Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal, 66, 988–998. 10.2136/sssaj2002.9880
 
Ben-Dor, E., Banin, A. (1995). Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59, 364–372. 10.2136/sssaj1995.03615995005900020014x